Incremental Learning of Nde Signals with Confidence Estimation
نویسنده
چکیده
An incremental learning algorithm, Learn—, is introduced, for learning additional information from new data, even when new data include examples of previously unseen classes. Learn++ takes advantage of synergistic generalization performance of an ensemble of simple classifiers, each trained with a strategically chosen subset of the training database. As new data become available, new classifiers are generated, which are then combined through weighted majority voting. The weights are determined based on the estimated likelihood of each classifier to correctly classify an instance of unknown class. The voting procedure also allows Learn— to estimate the confidence level in its own decision.
منابع مشابه
On the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملIncremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals
This work discuses a novel algorithm for joint sparse estimation of superimposed signals and their parameters. The proposed method is based on two concepts: a variational Bayesian version of the incremental sparse Bayesian learning (SBL)– fast variational SBL – and a variational Bayesian approach for parameter estimation of superimposed signal models. Both schemes estimate the unknown parameter...
متن کاملOn the Optimal Convergence Probability of Univariate Estimation of Distribution Algorithms
In this paper we obtain bounds on the probability of convergence to the optimal solution for the compact genetic algorithm (cGA) and the population based incremental learning (PBIL). Moreover, we give a sufficient condition for convergence of these algorithms to the optimal solution and compute a range of possible values for algorithm parameters at which there is convergence to the optimal solu...
متن کاملConfidence Estimation Using the Incremental Learning Algorithm, Learn++
Pattern recognition problems span a broad range of applications, where each application has its own tolerance on classification error. The varying levels of risk associated with many pattern recognition applications indicate the need for an algorithm with the ability to measure its own confidence. In this work, the supervised incremental learning algorithm Learn++ [1], which exploits the synerg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002